Примеры А/Ц-преобразования
9.24. 16-канальная А/Ц-система сбора данных
На рис. 9.64 показана схема, предназначенная для преобразования в цифровую форму любой из 16 аналоговых входных величин с 12-разрядным кодом на выходе. С ее помощью можно организовать «передний край» в эксперименте сбора данных под управлением микропроцессора.
Рис. 9.64. 12-разрядный 16-канальный АЦП последовательного приближения (50 мкс на преобразование).
ИС HI-506 представляет собой 16-канальный аналоговый МОП-мультиплексор с цифровыми входами, совместимыми с МОП-логикой. Этот своеобразный мультиплексор имеет несколько очень приятных свойств. В частности, его ключи являются разновидностью ключей с «размыканием перед срабатыванием». Это означает, что при смене адреса на мультиплексоре различные входные каналы не замыкаются друг с другом. Более того, входные сигналы могут уходить за пределы напряжения питания и при этом не будет возникать эффект «тиристорного защелкивания» или перекрестные помехи между входами. Учтите эти соображения, когда будете подыскивать себе линейные ключи. Они иногда могут породить проблемы. Например, «размыкание перед срабатыванием» снижает время переключения, поскольку «срабатывание» необходимо задержать для того, чтобы дать возможность ключу разомкнуться.
Единственный аналоговый выход мультиплексора поступает на схему LF398 — монолитный усилитель с выборкой и запоминанием (рис. 4.41) в удобном 8-выводном корпусе DIP (цена 2 долл.). Эта ИС используется как схема «слежения и запоминания», фиксирующая аналоговое колебание только с началом преобразования. С использованием конденсатора 1000 пФ выход схемы устанавливается до 1 МЗР за 0,5 мкс и снижается менее, чем на 3 мкВ за последующие 12 мкс преобразования. AD7572-3TO превосходный маломощный 12-разрядный АЦП с внутренними источником опорного напряжения и тактовым генератором; он имеет удобные управляющие сигналы для сопряжения с микропроцессором, включая возможность мультиплексирования 12-разрядного результата на 8 линий («байтовая шина данных») за два последовательных цикла.
Устройство, управляющее этой схемой, обычно назначает адрес для мультиплексора, затем инициирует преобразование с помощью сигналов . АЦП отвечает выдачей сигнала , который фиксирует аналоговый входной сигнал. Преобразование завершается через 12 мкс и сигнал устанавливается на высоком уровне. С этого момента доступны все 12 разрядов результата, если вы хотите использовать все 12 линий Dвых; однако если у вас 8-разрядная шина, то вы можете первыми считать 8 младших значащих разрядов, а затем подать сигнал ВЫБОР СТАРШЕГО БАЙТА для того, чтобы передать на D0-D3 4 старших значащих разряда.
После инициирования преобразования устройство, управляющее преобразователем, может заняться проверкой сигнала , чтобы увидеть, когда преобразование завершится. Более простой вариант — это ждать 12 мкс («временной цикл» программы потратит требуемое время; см. гл. 11). Управляющее устройство вынуждено ждать 4 мкс после завершения преобразования перед тем, как инициировать следующее преобразование; это-«время захвата» ИС LF398, т. е. время, необходимое для того, чтобы выход вновь отследил вход с точностью до 0,1 %. В течение этого времени устройство управления может, конечно, заняться считыванием цифрового выхода. Общее время преобразования составляет, таким образом, минимум 16 мкс, что равнозначно 60000 преобразованиям в секунду. По поводу этой схемы стоит сделать несколько замечаний: (а) Для получения полной 12-разрядной точности вы должны обеспечить подстройку сдвига для компенсации трех видов ошибок: 1) Uсдв входа В/3 составляет 7 мВ (макс); 2) полевой транзистор входа В/3 вводит небольшую ступеньку напряжения в режиме ЗАПОМИНАНИЕ, обусловленную инжекцией заряда в затвор полевого транзистора (разд. 3.12), в данном случае относительно стабильную отрицательную ступеньку в 10 мВ; 3) сам АЦП имеет Uсдв, определяемое как 4 МЗР (эквивалентно 5 мВ для диапазона входного сигнала 0–5 В). Мы включили схему подстройки для LF398, используя рекомендации изготовителя, (б) Емкость конденсатора запоминания определяется путем компромисса. Небольшая емкость сокращает время захвата, но приводит к большему спаду вершины импульса и большей ступеньке от инжекции заряда. Мы выбрали емкость, которая дает незначительный спад и приводит к ступеньке в режиме ЗАПОМИНАНИЕ, эквивалентной 8 МЗР; ступенька сравнительно стабильна и ее можно компенсировать соответствующей подстройкой с помощью регулятора «Подстройка сдвига», (в) Схема приспособлена под однополярные входные сигналы (0–5 В); если необходимо принимать биполярные входные сигналы, то следует добавить схему смещения операционного усилителя, позаботясь о том, чтобы удержать ошибки в пределах менее 1 МЗР (1 часть на 4000). Для того чтобы облегчить работу, схема AD7572 выдает прецизионное опорное напряжение, тем не менее потребуется еще несколько компонентов, (г) Прекрасным дополнением к такого сорта схемам является усилитель с программируемым коэффициентом усиления, так что управляющий микропроцессор может управлять коэффициентом усиления для того, чтобы приспособиться к диапазону амплитуд входного сигнала. ИС AD526 фирмы Analog Devices представляет собой однокристальный прибор с программируемым коэффициентом усиления 1, 2, 4, 8 и 16 и точностью усиления 0,02 % (точность 12 разрядов); альтернативный вариант — ИС LF13006/7 фирмы National содержит резисторы и ключи на полевых транзисторах (но не сам усилитель) для установки коэффициента усиления от 1 до 128 (с коэффициентами 2) или от 1 до 100 (в последовательности 1-2-5); эти компоненты имеют точность коэффициента усиления 0,5 % (точность 8 разрядов).
В этой схеме, естественно, используется АЦП с последовательным приближением, поскольку при переключении от одного входа к другому важную роль играет быстродействие. Мы выбирали компоненты, стараясь минимизировать стоимость. Показанная схема будет стоить около 50 долл. по ценам на сегодня; основной вклад в стоимость вносит преобразователь — 35 долл.
9.25. 3 1/2-знаковый цифровой вольтметр
На рис. 9.65 представлена схема, в которой использованы преимущества двухстадийного интегрирования. Почти вся схема цифрового вольтметра, за исключением внешних компонентов для интегратора и генератора тактовых импульсов, точного источника опорного напряжения и устройства отображения, выполнена на однокристальной КМОП БИС. Схема ICL7107 при работе использует цикл автоматического обнуления и даже, более того, формирует все 7-сегментные мультиплексируемые выходные сигналы для непосредственного запуска 4-цифрового дисплея на светодиодах. Используя на входе внешний аттенюатор (или эталонный источник), вы можете формировать другие полномасштабные диапазоны напряжений. Метод двухстадийного преобразования очень удобен для работы цифрового вольтметра: он обеспечивает хорошую точность (включая автокоррекцию нуля) и подавление сетевых помех в приборах с усреднением при низкой стоимости. Стоимость используемого здесь преобразователя не превышает 20 долл.
Рис. 9.65. Однокристальный «3 1/2-знаковый» цифровой вольтметр с двухстадийным интегрированием. В — высокий; Н — низкий.
9.26. Кулонометр
Схема, показанная на рис. 9.66, представляет собой токовый интегратор с уравновешиванием заряда, или «кулонометр». Этот прибор можно использовать для измерения интегрального тока (полного заряда) за определенный интервал времени; он может найти применение в области электрохимии или для электрофореза. Начнем с нижнего левого угла, где интегрируемый ток протекает через мощный прецизионный 4-проводный резистор, образуя пропорциональное напряжение. ИМС2 является сравнительно недорогим (менее 5 долл.) прецизионным операционным усилителем с одним источником питания, с низким начальным сдвигом напряжения (80 мкВ макс.) и малым дрейфом сдвига во времени и по температуре (менее 2 мкВ на градус и 0,5 мкВ в месяц).
Рис. 9.66. Кулонометр (счетчик накопленного заряда). К.Т. — контрольная точка интегратора; Пр — предохранитель; НК — неподключенный контакт; МЗЦ — младшая значащая цифра; СЗЦ — старшая значащая цифра.
Он формирует выходной ток, программируемый измеряемым током и запускает зарядоуравновешивающий интегратор на ИМСЗ. С помощью поворотного переключателя на входе выбирается один из пяти декадных пределов чувствительности, причем на любом диапазоне полному входному сигналу соответствует ток 200 мкА в коллекторе Τ1. Транзистор Τ1 — это полевой МОП-транзистор (а не биполярный плоскостной транзистор), используемый для исключения ошибки управляющего тока.
Схема уравновешивания заряда является обычной дельта-сигма-схемой с полевым p-канальным транзистором Т2, работающим в режиме обогащения, который выдает порции заряда в соответствии с состоянием триггера ИМС5а после каждого такта синхронизации. ИМС5б работает как одновибратор, увеличивая состояние двоичной пересчетной схемы ИМС7 на каждом такте, в течение которого Т2 находится в проводящем состоянии. Эта схема не подсчитывает какое-то определенное число тактов синхронизации, а просто накапливает до тех пор, пока не остановится. 4-разрядные счетчики ИМС9 и ИМС10 отслеживают общий заряд и управляют 8-разрядным дисплеем на светодиодах.
Если измеряемый ток превышает максимальный ток выбранного диапазона, то ток Т2 не способен уравновесить ток Т1, даже если транзистор будет постоянно включен; при этом зафиксированное на счетчиках значение заряда будет содержать ошибку. ИМС4а проверяет условие выхода за пределы диапазона и зажигает светодиод, если выходной сигнал интегратора превышает фиксированный уровень опорного напряжения (который выбирается с запасом по отношению к нормальным условиям работы интегратора).
Некоторые подсчеты при проектировании. При проектировании схемы типа этой следует принять несколько решений. Например, большинство элементов КМОП-логики работают от напряжения +15 В для того, чтобы упростить коммутацию транзистора Т2. Поскольку 4-разрядные счетчики работают от напряжения +5 В, для сопряжения высокоуровневых сигналов КМОП-логики с уровнями счетчика использована схема 4049. ИМС4 работает от одного источника питания и ее выходной сигнал изменяется от нуля до +15 В, что упрощает подключение к ИМС5а.
Для того чтобы обеспечить достаточный диапазон работы транзистора Т1, опорное напряжение для интегратора и компаратора устанавливается с помощью стабилитрона D2 на уровне +4,7 В; здесь подойдет самый простой стабилитрон, поскольку точность не требуется. Обратите внимание на то, что прецизионное опорное напряжение зависит от напряжения +4,7 В, использованного для масштабирования тока, коммутируемого в интеграторе. Рабочий ток источника REF-02 используется заодно и для смещения стабилитрона.
Ключ (Т2) может оказать существенное влияние на общую точность прибора. Если он обладает слишком большой емкостью, то дополнительный заряд на его стоке приведет к погрешности. Схемное решение, использованное в предыдущем примере (коммутация на землю во время циклов отклонения тока), в данном случае не подойдет, поскольку ошибки напряжения сдвига ИМСЗ приведут к постоянной ошибке при очень малых токах. Используя однополюсный однонаправленный переключатель, показанный на схеме, можно увеличить динамический диапазон за счет некоторого снижения точности (что вызвано избыточным зарядом на стоке транзистора Т2, который интегрируется на каждом такте). Выбранный операционный усилитель интегратора представляет собой усилитель на полевых МОП-транзисторах с малыми токами смещения и поэтому пренебрежимо малой погрешностью по току (10 пА тип.). Поскольку операционные усилители на полевых транзисторах имеют, как правило, большие напряжения сдвига, чем усилители на биполярных транзисторах, такой выбор усилителя только обострит только что рассмотренную проблему динамического диапазона при использовании однополюсного ключа на два направления.
Динамический диапазон. Важно понимать, что этот прибор спроектирован в расчете на большой динамический диапазон с точным интегрированием тока, изменяющегося в процессе эксперимента на несколько порядков по величине. Именно по этой причине большое внимание уделяется схеме «переднего края» на прецизионном операционном усилителе с цепью подстройки сдвига, обеспечивающей прецизионную регулировку (обычная схема подстройки имеет, как правило, полный диапазон в несколько милливольт, что затрудняет точную подстройку сдвига на нуле). При подстройке ИМС2 на сдвиг 10 мВ или менее динамический диапазон прибора будет превышать 10000:1.