4.4. Действие ветра на парус

We use cookies. Read the Privacy and Cookie Policy

4.4. Действие ветра на парус

На шлюпку под парусом оказывают влияние две среды: воздушный поток, действующий на парус и надводную часть шлюпки, и вода, действующая на подводную часть шлюпки.

Благодаря форме паруса даже при самом неблагоприятном ветре (бейдевинд) шлюпка может двигаться вперед. Парус напоминает крыло, наибольший прогиб которого удален от передней шкаторины на 1/3-1/4 ширины паруса и имеет величину 8-10% ширины паруса (рис. 44).

Если ветер, имеющий направление В (рис. 45, а), встречает на пути парус, он огибает его с двух сторон. С наветренной стороны паруса создается давление выше (+), нежели с Подветренной (-). Равнодействующая сил давления образует силу Р,направленную перпендикулярно плоскости паруса или хорде, проходящей через переднюю и заднюю шкаторины и приложенную к центру парусности ЦП (рис. 45, б).

Рис. 44. Профиль паруса:

В – ширина паруса по хорде

Рис. 45. Силы, действующие на парус и корпус шлюпки:

а – действие ветра на парус; б – действие ветра на парус и воды на корпус шлюпки

Рис. 46. Правильное положение паруса при различных направлениях ветра: а – бейдевинд; б – галфвинд; в – фордевинд

Сила Р раскладывается на силу тяги Т, направленную параллельно диаметральной плоскости (ДП) шлюпки, заставляющую шлюпку двигаться вперед, и силу дрейфа Д, направленную перпендикулярно ДП, вызывающую дрейф и крен шлюпки.

Сила Р зависит от скорости и направления ветра относительно паруса. Чем больше ‹ в между направлением ветра В и плоскостью паруса ПП, тем больше сила Р.

Если ‹в = 90°, сила Р достигает максимальной величины. Силы Т и Д зависят от ‹Y между ДП шлюпки и плоскостью паруса. С увеличением ‹Y cила Т увеличивается, а сила Д уменьшается.

Действие воды на шлюпку во многом зависит от обводов ее подводной части.

Несмотря на то что при ветре бейдевинд сила дрейфа Д превышает силу тяги Т, шлюпка имеет ход вперед. Здесь сказывается боковое сопротивление R1 подводной части корпуса, которое во много раз больше лобового сопротивления R.

Рис. 47. Вымпельный ветер:

ВИ – истинный ветер; ВШ – ветер от движения шлюпки; ВВ – вымпельный ветер

Сила Д, несмотря на противодействие корпуса, все же сносит шлюпку с линии курса. Составленный ДП и направлением истинного движения шлюпки ИП ‹ a называется углом дрейфа. Чем острее угол между ДП и направлением ветра, тем больше угол дрейфа, так как при острых углах сила тяги Т незначительна и шлюпка, не имея достаточного поступательного движения вперед, сносится под ветер. При ветре бейдевинд круче 40-45° шлюпка вперед двигаться не может.

Таким образом, наибольшая тяга и наименьший дрейф шлюпки могут быть получены путем выбора наиболее выгодного положения диаметральной плоскости шлюпки и плоскости паруса относительно ветра. Установлено, что угол между ДП шлюпки и плоскостью паруса должен быть равен половине ‹ A между диаметральной плоскостью и направлением ветра. На рис. 46 показано правильное положение паруса при ветрах бейдевинд (а), галфвинд (б) и фордевинд (в).

При выборе положения паруса относительно ДП и ветра старшина шлюпки руководствуется не истинным, а вымпельным (кажущимся) ветром, направление которого определяется равнодействующей от скорости шлюпки и скорости истинного ветра (рис. 47).

Кливер, расположенный перед фоком, исполняет роль предкрылка. Поток воздуха, проходящий между кливером и фоком, уменьшает давление на подветренной стороне фока и, следовательно, увеличивает его тяговую силу. Это происходит лишь при условии, что угол между кливером и ДП шлюпки несколько больше угла между фоком и ДП (рис. 48, а).

Рис. 48. Установка кливера относительно фока:

а – правильно; б – неправильно

Если же кливер прижать к ДП, то поток воздуха будет ударять в подветренную сторону фока, ухудшит его форму и уменьшит тяговую силу (рис. 48, б). Такое же действие производит кливер, имеющий слишком выгнутую форму.