1.1. ОПТИЧЕСКАЯ МИКРОСКОПИЯ И МИКРОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ВЕЩЕСТВ И МАТЕРИАЛОВ

We use cookies. Read the Privacy and Cookie Policy

Оптическая микроскопия в криминалистическом исследовании веществ, материалов и изделий используется в различных вариантах: анализ в проходящем свете методами светлого и темного поля, фазового контраста; анализ в поляризованном свете; наблюдение люминесценции в ультрафиолетовых лучах и др.

Рис. 27. Схема микроскопических методов исследования веществ и материалов

Методы оптической микроскопии предполагают использование оптических микроскопов различной конструкции. Конструктивные отличия обусловливают различие свойств микроскопов, их возможностей в исследовании объектов. В связи с этим микроскопические методы принято различать по виду используемого микроскопа, по виду физического явления, используемого в микроскопе. В практике КИВМИ наибольшее применение нашли следующие виды микроскопов:

• биологический;

• металлографический;

• сравнительный;

• поляризационный;

• люминесцентный;

• ультрамикроскоп;

• интерференционный.

Микроскопы бинокулярные стереоскопические (МБС)[97] являются классическими и содержат минимально необходимый комплект органов управления и выполняемых функций. Данные микроскопы имеют по одному объективу, по несколько сменных окуляров с различным увеличением и по две осветительные системы (на отражение и пропускание). Он позволяет получать объемное изображение объекта, исследовать его в отраженных и проходящих видимых лучах при сравнительно небольших увеличениях (до 100?), фотографировать при помощи микрофотонасадки и проводить измерения линейных величин. Отличительной характеристикой указанных микроскопов является большое рабочее расстояние (расстояние между поверхностью объекта и фронтальной — расположенной ближе к объекту — линзой объектива, что позволяет исследовать объекты достаточно большой толщины, например осмотреть рабочую поверхность предполагаемого орудия взлома с целью обнаружения частиц материалов взломанной преграды. Кроме того, немаловажно, что исследование с использованием подобных микроскопов не требует предварительной подготовки объектов.

Биологические микроскопы. Биологический микроскоп общего назначения «Биолам», большой исследовательский «МБИ-15» и другие представляют наиболее распространенную группу моделей приборов. Микроскопы этой группы предназначены для исследования таких прозрачных и полупрозрачных объектов КИВМИ, как, например, текстильные волокна, частицы наркотиков растительного происхождения, волокна бумаги и пр. Поэтому исследования в основном проводят в проходящем свете в светлом и темном поле. В конструкции рабочего стола микроскопа предусмотрен конденсор проходящего освещения — собирающая линза. Исследование объектов можно также проводить и в отраженном свете с помощью автономного осветителя. Оптическая система микроскопа часто содержит лишь один окуляр; исследуемые объекты не требуют большой глубины резкости, так как их исследование проводится в виде микропрепаратов[98]. В конструкции микроскопа, как правило, предусматривается несколько сменных объективов, позволяющих изменять увеличение. Для удобства работы сменные объективы монтируют на револьверной головке. Увеличение, даваемое подобными микроскопами, доходит до нескольких тысяч крат.

При исследовании микропрепараты требуют перемещения под объективом. Для этой цели микроскопы снабжены препаратоводителем, позволяющим перемещать объект по ортогональным осям и поворачивать вокруг своей оси. Механизм препаратоводителя имеет измерительные шкалы с нониусами (подобно штангенциркулю), что повышает точность перемещения объекта до десятых долей миллиметра и до долей угловой минуты.

Конструкция микроскопа позволяет вести фотографирование объектов с помощью микрофотонасадок типа МФН.

Металлографические микроскопы предназначены для исследования микроструктуры металлов и сплавов. При проведении металлографических исследований, как правило, применяют предварительную пробоподготовку, которая заключается в подготовке шлифов с последующим травлением соответствующими растворами или без него.

При металлографических исследованиях обычно определяют структуру сплавов, наличие фаз, их соотношение, сочетание, форму зерен, их размер, характер выделившихся фаз и т.п. По изменениям, которые произошли в металле, можно достоверно судить о тех технологических особенностях, которые произошли с данным металлом. Например, сравнительное исследование как в зоне пожара, так и в отстоящем от очага месте позволяет судить о величине температуры и времени термического воздействия на металл.

По устройству металлографические микроскопы делят на вертикальные и горизонтальные. В вертикальном микроскопе, например МИМ-7, можно вести исследование в темном или светлом поле, при вертикальном или косом освещении, а также в поляризованном свете с увеличением от 60? до 1440?.

Еще один вид вертикального металлографического микроскопа — ММР-4 по конструкции и возможностям превосходит микроскоп МИМ-7. Достоинством микроскопа ММР-4 является применение револьверной головки, в которую вмонтированы шесть плана-хроматических объективов, поворот которой включает в оптическую систему тот или иной объектив. Кроме того, микроскоп имеет панкратическую систему линз, что позволяет изменять увеличение микроскопов в 2-3 раза без изменения фокусировки.

Типовым горизонтальным металлографическим микроскопом является МИМ-8М. Он имеет оптическую систему с увеличением при зрительном наблюдении от 100? до 1350? и от 45? до 2000?. Для проведения фотосъемки объекта предусмотрен специальный оптический канал, обеспечивающий высокую четкость изображения.

В настоящее время в лабораториях применяют более совершенную модель микроскопа — МИМ-9. В этом микроскопе могут быть использованы все способы освещения, а также автоматизированы управление мехом фотокамеры, подача предметного столика и отработка экспозиции.

Все металлографические микроскопы имеют штатные иммерсионные объективы, увеличивающие оптическое разрешение и позволяющие реализовать увеличение более 500?.

Сравнительные микроскопы. Методы оптического наложения двух объектов в одном кадре нередко применяются в практике криминалистического исследования веществ, материалов и изделий при исследовании лакокрасочных покрытий, волокнистых и строительных материалов, почвы и пр. Устройством, позволяющим совмещать микроскопические трассы на объектах и фотографировать их, воссоздавать целое по линии разрыва, разлома, являются сравнительные микроскопы МС-51 и МСК-1. В отличие от МБС-10 эти микроскопы имеют два объектива и две осветительные системы.

Изображение объектов, расположенных под левым и правым объективами, сводится в одно единое изображение. Это же изображение снимают специальной камерой, встроенной в микроскоп. Линия раздела между двумя совмещаемыми изображениями перемещается.

Поляризационные микроскопы используются для исследования анизотропных объектов в поляризованном свете (проходящем и отраженном) и оснащены поляризатором для поляризации падающего на объект света, а также анализатором, анализирующим световой поток, прошедший или отраженный от исследуемого объекта. Это позволяет контрастировать бесцветные объекты, не окрашивая их химическими реактивами, т.е. не изменяя объекта. В остальном конструкция поляризационного микроскопа аналогична микроскопу МБС-10. Поляризатор располагают между осветителем и объектом, а анализатор за объектом.

Поляризационные микроскопы в КИВМИ предназначены, например, для исследования волокнистых материалов, обнаружения следов парафина в осалке пыжей патронов к охотничьим ружьям и т.д. Эта возможность возникает вследствие того, что подобные объекты изменяют плоскость поляризации света. Если падающему на объект свету придать определенную плоскость поляризации, то после прохождения или отражения от объекта разные области по-разному изменят плоскость поляризации, в результате чего в окуляре микроскопа будут иметь разную окраску.

Люминесцентные микроскопы оснащены излучателями, дающими излучение, которое заставляет люминесцировать изучаемые объекты и позволяют наблюдать их свечение. Явление люминесценции дает возможность выявлять морфологические особенности объекта, наблюдать микрообъекты, размер которых меньше разрешаемого оптикой расстояния, то есть неоднородности структуры объекта, которые находятся за пределами наблюдения обычного оптического микроскопа, например МБС-10.

Особенность люминесцентного микроскопа в том, что иногда для возбуждения люминесценции изучаемые объекты нужно обрабатывать определенными химическими составами — «активировать».

Ультрамикроскоп по своим характеристикам подобен люминесцентному микроскопу. Разница лишь в том, что обнаружение ультрамалых структурных неоднородностей основано на возникновении дифракционной картины на наблюдаемых частицах. Свечение, возникающее около частиц, естественно, также не позволяет определить их строение, размеры и форму, так как частицы таких малых размеров невозможно наблюдать при помощи обычного оптического микроскопа. Но появляется возможность выявить наличие частиц, определить их количество и концентрацию.

Ультрамикроскопы применяются для обнаружения и подсчета микроскопических и субмикроскопических частиц в газах, жидкостях и прозрачных твердых телах (например, частиц в запыленном воздухе, в загрязненной воде и др.), т.е. частиц, размеры которых лежат далеко за пределами разрешающей способности микроскопов с наибольшей апертурой. Ультрамикроскопы дают возможность судить только о наличии частиц размером до 2 нм.

Особенность интерференционного микроскопа состоит в том, что исследуемый объект создает в тонких, оптически разнородных слоях когерентные лучи, которые и формируют наблюдаемую и фотографируемую интерференционную картину. Нарушение целостности линий интерференционной картины свидетельствует о нарушении периодичности в кристаллической структуре объекта. Эти структурные нарушения настолько малы, что классическим оптическим микроскопом, например МБС-10, наблюдать их невозможно.

Микроскопические методы исследования веществ и материалов

Большое значение для получения контрастных и равномерно освещенных изображений в микроскопе имеет устройство его осветительной системы. В условиях естественного освещения вогнутое зеркало микроскопа позволяет создать равномерную освещенность препарата без использования дополнительных источников освещения. Такая освещенность часто бывает недостаточна. Поэтому пользуются искусственными источниками света, проецируя равномерно светящееся тело нити лампы на объект.

Для микроскопических исследований в качестве источника света используются лампы накаливания (проекционные, микролампы), электрическая дуга, дневной свет и т.п.

Наибольшее распространение в практике получила микроскопия в видимой зоне спектра. Структуру препарата, рассматриваемого через микроскоп, можно видеть лишь тогда, когда различные частицы препарата отличаются друг от друга и от окружающей среды по поглощению (отражению) света или по показателю преломления. Эти свойства обусловливают разность фаз и амплитуд световых колебаний, прошедших через различные участки препарата, т.е. контрастность изображения. Однако существуют такие объекты и задачи исследования, решение которых невозможно в рамках традиционных методов, поэтому были разработаны специальные методы. Техническая и методическая реализация этих методов очень сложна и требует специальных знаний и навыков. Рассмотрим некоторые специальные методы микроскопических исследований.

Для метода светлого поля в проходящем свете, используемого для исследования прозрачных объектов с включениями, характерно прохождение лучей из конденсора через препарат в объектив, что дает равномерно освещенное поле в плоскости изображения. Элементы структуры препарата частично поглощают и отклоняют падающий на них свет, что и обусловливает согласно теории Аббе возникновение изображения. Этот метод может быть полезен и при непоглощающих объектах, но лишь в том случае, когда они отклоняют или рассеивают освещающий пучок света настолько сильно, что значительная часть пучка не попадает в объектив.

Метод темного поля в проходящем свете применяется для получения изображений прозрачных непоглощающих, а поэтому и невидимых объектов при наблюдении в светлом поле. Пучок лучей из конденсора темного поля выходит в виде полого конуса и непосредственно в объектив не попадает. В поле зрения микроскопа на темном фоне видны светлые изображения мелких деталей, тогда как у крупных деталей видны только светлые края, которые рассеивают освещающие лучи. Изображение создается только светом, который рассеивается мелкоструктурными элементами препарата.

По такому изображению нельзя с полной определенностью делать заключение об истинном виде и форме элементов структуры. Конденсор темного поля требует применения предметного стекла, толщина которого не превышает 1-2 мм. Кроме того, конденсор должен быть хорошо центрирован относительно объектива.

Наиболее часто методы светлого и темного поля в проходящем свете используются в экспертном исследовании текстильных волокон, наркотических средств, частиц стекла и пластмасс, минеральных компонентов почвы и пр.

При методе светлого поля в отраженном свете освещение препарата производится сверху через объектив, который одновременно выполняет роль конденсора. Изображение, как и при проходящем свете, создается за счет того, что различные участки препарата по-разному отклоняют и отражают падающий на них свет.

К методу светлого поля относится и так называемый метод косого освещения. Он осуществляется путем смещения апертурной диафрагмы в направлении, перпендикулярном к оптической оси. В этом случае при соответствующем диафрагмировании можно создать боковое освещение препарата, благодаря чему изображение становится более контрастным. При предельно возможном косом освещении, как говорилось выше, достигается наибольшая разрешающая способность микроскопа в направлении смещения диафрагмы. Если сместить апертурную диафрагму еще дальше так, чтобы свет, направляемый на препарат, не попадал в объектив, то метод косого освещения превращается в метод темного поля.

Данный метод используется для изучения широкого круга вещественных доказательств: изделий из металлов и сплавов, лакокрасочных покрытий, текстильных волокон, материалов документов и пр.

Метод темного поля в отраженном свете осуществляется путем освещения препарата, например шлифа металла, сверху с помощью специальной кольцевой зеркальной системы, расположенной вокруг объектива и называемой эпиконденсором. Изображение же, как и при проходящем свете, создается только лучами, рассеянными объектом, тогда как лучи света, вышедшие из эпиконденсора и зеркально отразившиеся от поверхности объекта, в объектив не попадают. Поэтому для работы необходимо применять очень яркие источники света.

Метод фазового контраста имеет большое практическое значение, так как дает возможность получать контрастные изображения прозрачных и бесцветных объектов, почти невидимых при обычных методах микроскопии. К числу таких объектов относятся, например, осколки стекла, минералогические объекты. Метод основан на том, что даже при малом различии показателей преломления объекта и среды световая волна, прошедшая сквозь них, претерпевает разные изменения по фазе и приобретает фазовый рельеф. Темные и светлые места в фазово-контрастном изображении соответствуют различным показателям преломления в препарате (фазовый контраст), который с помощью специального электронного оптического устройства преобразуется в ослабление или усиление интенсивности света, прошедшего сквозь объект (то есть фазовый рельеф волны заменяется амплитудным рельефом). Так получается видимое изображение препарата.

Метод флуоресцентной или люминесцентной микроскопии. Данный метод использует явление люминесценции. Объект освещается излучением, возбуждающим люминесценцию (возможна специальная обработка флуоресцирующими красителями). При этом наблюдается цветная контрастная картина свечения, позволяющая выявить особенности объекта. Длинноволновое изображение препарата выделяется при помощи светофильтров.

Метод УФ-микроскопии позволяет увеличить предельную разрешающую способность микроскопа. Этот метод расширяет возможности микроскопических исследований за счет того, что частицы многих веществ и материалов, прозрачные в видимом свете, сильно поглощают УФ-излучение определенных длин волн и, следовательно, легко различимы в УФ-изображениях. Так, органические соединения имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть контрастными без окрашивания.

В методе УФ-микроскопии оптические узлы микроскопа должны быть изготовлены из кварцевого стекла, прозрачного для УФ-лучей. Изображение в УФ-микроскопии регистрируют либо фотографированием, либо наблюдают получаемую картину на люминесцирующем экране.